Torsion of the symmetric algebra and implicitization

Autor: Laurent Busé, Marc Chardin, Jean Pierre Jouanolou
Přispěvatelé: Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
Rok vydání: 2006
Předmět:
Zdroj: Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2009, 137 (6), pp.1855-1865
Proceedings of the American Mathematical Society, 2009, 137 (6), pp.1855-1865
ISSN: 0002-9939
1088-6826
DOI: 10.48550/arxiv.math/0610186
Popis: Recently, a method to compute the implicit equation of a parametrized hypersurface has been developed by the authors. We address here some questions related to this method. First, we prove that the degree estimate for the stabilization of the MacRae’s invariant of Sym A ⁡ ( I ) ν \operatorname {Sym}_{A}(I)_{\nu } is optimal. Then, we show that the extraneous factor that may appear in the process splits into a product of linear forms in the algebraic closure of the base field, each linear form being associated to a non-complete intersection base point. Finally, we make a link between this method and a resultant computation for the case of rational plane curves and space surfaces.
Databáze: OpenAIRE