Real-Time Wireless Platform for In Vivo Monitoring of Bone Regeneration
Autor: | Juan Antonio Gómez-Galán, Manuel Sanchez-Raya, Esther Reina-Romo, Juan Mora-Macías, Jaime Domínguez, Pablo Blázquez-Carmona |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ingeniería Mecánica y de Fabricación, Junta de Andalucía, Ministerio de Economía y Competitividad (MINECO). España |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
External fixator
Bone Regeneration External Fixators Computer science 0206 medical engineering external fixator 02 engineering and technology Bone healing callus stiffness lcsh:Chemical technology Biochemistry Bone Lengthening Article Analytical Chemistry In vivo Wireless Animals Bone formation lcsh:TP1-1185 Electrical and Electronic Engineering Bony Callus Bone regeneration Instrumentation Metatarsal Bones Fixation (histology) Monitoring Physiologic wireless acquisition system Sheep Wireless acquisition system business.industry Callus stiffness 021001 nanoscience & nanotechnology calibration 020601 biomedical engineering Atomic and Molecular Physics and Optics Radiography Load sensor Calibration 0210 nano-technology business Ex vivo load sensor Biomedical engineering |
Zdroj: | Sensors, Vol 20, Iss 4591, p 4591 (2020) Sensors Volume 20 Issue 16 Sensors (Basel, Switzerland) idUS. Depósito de Investigación de la Universidad de Sevilla instname idUS: Depósito de Investigación de la Universidad de Sevilla Universidad de Sevilla (US) Arias Montano. Repositorio Institucional de la Universidad de Huelva |
Popis: | For the monitoring of bone regeneration processes, the instrumentation of the fixation is an increasingly common technique to indirectly measure the evolution of bone formation instead of ex vivo measurements or traditional in vivo techniques, such as X-ray or visual review. A versatile instrumented external fixator capable of adapting to multiple bone regeneration processes was designed, as well as a wireless acquisition system for the data collection. The design and implementation of the overall architecture of such a system is described in this work, including the hardware, firmware, and mechanical components. The measurements are conditioned and subsequently sent to a PC via wireless communication to be in vivo displayed and analyzed using a developed real-time monitoring application. Moreover, a model for the in vivo estimation of the bone callus stiffness from collected data was defined. This model was validated in vitro using elastic springs, reporting promising results with respect to previous equipment, with average errors and uncertainties below 6.7% and 14.04%. The devices were also validated in vivo performing a bone lengthening treatment on a sheep metatarsus. The resulting system allowed the in vivo mechanical characterization of the bone callus during experimentation, providing a low-cost, simple, and highly reliable solution. Junta de Andalucía US-1261691 Ministerio de Economía y Competitividad DPI2017-82501-P Ministerio de Economía y Competitividad PGC2018-097257-B-C31 |
Databáze: | OpenAIRE |
Externí odkaz: |