Ultrafast laser-matter interaction with nanostructured targets
Autor: | Justin Wark, R. H. H. Ko, J. C. Adam, Eric Galtier, Robin Marjoribanks, Q. Y. van den Berg, Eric Cunningham, John E. Sipe, G. Thomas, L. Lecherbourg, Alan Miscampbell, Jeremy Li, T. R. Preston, Sam Vinko, R. Royle, Anne Héron, Muhammad Kasim, Bob Nagler, A. Tan, G. Kulcsar, Oliver Humphries, S. Le Moal |
---|---|
Přispěvatelé: | Heron, Anne |
Rok vydání: | 2019 |
Předmět: |
Materials science
business.industry Nanowire Physics::Optics Plasma Dielectric Fresnel equations Laser [PHYS] Physics [physics] law.invention Optics law [PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] Ionization Femtosecond business Ultrashort pulse ComputingMilieux_MISCELLANEOUS |
Zdroj: | X-Ray Lasers and Coherent X-Ray Sources: Development and Applications XIII. |
DOI: | 10.1117/12.2533528 |
Popis: | Conventional solid-density laser-plasma targets quickly ionize to make a plasma mirror, which largely reflects ultra-intense laser pulses. This Fresnel reflection at the plane boundary largely wastes our e orts at ultra-intense laser/solid interaction, and limits target heating to nonlinear generation of high-energy electrons which penetrate inward. One way around this dual problem is to create a material with an anisotropic dielectric function, for instance by nanostructuring a material in such a way that it cannot support the material responses which generate a specularly reflected beam. We present linear theory for metallic and plasma nanowires, particle-incell simulations of the interaction of ultra-intense femtosecond pulses with nickel nanowires, showing penetration of laser light far deeper than a nickel skin-depth, helping to uniformly heat near-solid material to conditions of high energy-densities, and XFEL experiments giving insight into their ionization and excitation. |
Databáze: | OpenAIRE |
Externí odkaz: |