High-rank ternary forms of even degree

Autor: Alessandro De Paris
Přispěvatelé: DE PARIS, Alessandro
Rok vydání: 2017
Předmět:
DOI: 10.48550/arxiv.1706.04604
Popis: We exhibit, for each positive even degree, a ternary form of rank strictly greater than the maximum rank of monomials. Together with an earlier result in the odd case, this gives a lower bound of $$\begin{aligned} \left\lfloor \frac{d^2+2d+5}{4}\right\rfloor \;, \end{aligned}$$ for $$d\ge 2$$ , on the maximum rank of degree d ternary forms with coefficients in an algebraically closed field of characteristic zero.
Databáze: OpenAIRE