Quasi-Hamiltonian bookkeeping of WZNW defects

Autor: Ctirad Klimcik
Přispěvatelé: Institut de mathématiques de Luminy (IML), Centre National de la Recherche Scientifique (CNRS)-Université de la Méditerranée - Aix-Marseille 2, Université de la Méditerranée - Aix-Marseille 2-Centre National de la Recherche Scientifique (CNRS), Klimcik, Ctirad
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2013, 76, pp.25-37
Journal of Geometry and Physics, 2013, 76, pp.25-37
ISSN: 0393-0440
Popis: We interpret the chiral WZNW model with general monodromy as an infinite dimensional quasi-Hamiltonian dynamical system. This interpretation permits to explain the totality of complicated cross-terms in the symplectic structures of various WZNW defects solely in terms of the single concept of the quasi-Hamiltonian fusion. Translated from the WZNW language into that of the moduli space of flat connections on Riemann surfaces, our result gives a compact and transparent characterisation of the symplectic structure of the moduli space of flat connections on a surface with k handles, n boundaries and m Wilson lines.
22 pages
Databáze: OpenAIRE