Ameliorative effects of functional chalaza hydrolysates prepared from protease-A digestion on cognitive dysfunction and brain oxidative damages
Autor: | Yi-Ling Lin, Jung-Kai Tseng, Jr-Wei Chen, Yi-Chen Chen, Yi-Hsieng Samuel Wu, Chia-Jung Chan, Sheng-Yao Wang |
---|---|
Rok vydání: | 2019 |
Předmět: |
Male
endocrine system Antioxidant Protein Hydrolysates medicine.medical_treatment Anserine D-galactose Anti-Inflammatory Agents crude chalaza hydrolysate Protective Agents Hippocampus Hydrolysate Antioxidants hippocampus morphology chemistry.chemical_compound Subcutaneous injection Mice Animal science antioxidant/anti-inflammatory capacity Memory cognitive dysfunction medicine Animals Learning Maze Learning Saline lcsh:SF1-1100 Neurons Mice Inbred ICR Protease Carnosine General Medicine Processing and Products Egg Yolk Oxidative Stress chemistry Distilled water Animal Science and Zoology lcsh:Animal culture Digestion Chickens |
Zdroj: | Poultry Science Poultry Science, Vol 99, Iss 5, Pp 2819-2832 (2020) |
ISSN: | 1525-3171 |
Popis: | Our patented protease A–digested crude chalaza hydrolysates (CCH) show antioxidant abilities in vitro. The prophylactic effects of CCH on cognitive dysfunction and brain oxidative damages were investigated via a D-galactose (DG)–injected mouse model in this study. Fifty-four mice were randomly divided into the following: (1) CON, 0.1 mL 0.9% saline (subcutaneous injection [SC] on the back)+distilled water (oral gavage); (2) DG, 100 mg/kg BW/day D-galactose (Bio-Serv Co., Flemington, NJ, USA) (SC on the back)+distilled water (oral gavage); (3) DG_LCH, 100 mg/kg BW/day D-galactose (SC on the back) + 50 mg CCH/kg BW/day in 0.1 ml distilled water (oral gavage); (4) DG_MCH, 100 mg/kg BW/day D-galactose (SC on the back) + 100 mg CCH/kg BW/day (oral gavage); (5) DG_HCH, 100 mg/kg BW/day D-galactose (SC on the back) + 200 mg CCH/kg BW/day (oral gavage); (6) DG_AG, 100 mg/kg BW/day D-galactose (SC on the back) + 100 mg aminoguanidine hydrochloride/kg BW/day (oral gavage). The experiment lasted for 84 D. CCH, containing antioxidant-free amino acids and anserine, restored (P < 0.05) DG-injected memory injury in the Morris water maze test and attenuated the neuronal degenerations and nucleus shrinkages in the dentate gyrus area. CCH supplementation also reduced amyloid β-peptide protein levels and accumulation of advanced glycation end products (AGE) in the brain of DG-injected mice, whereas the brain antioxidant capacity was reversed (P < 0.05) by supplementing CCH. Furthermore, AGE receptor (RAGE), NFκb, IL-6, and TNF-α gene expressions were downregulated (P < 0.05) by supplementing CCH. Therefore, CCH show prophylactic effects on the development of oxidative stress-induced cognitive dysfunction. |
Databáze: | OpenAIRE |
Externí odkaz: |