Symplectic homology and the Eilenberg–Steenrod axioms

Autor: Kai Cieliebak, Alexandru Oancea
Přispěvatelé: Universität Augsburg [Augsburg], Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Cieliebak, Kai, Oancea, Alexandru, Albers, Peter
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Mathematics - Differential Geometry
Pure mathematics
53D40
Eilenberg–Steenrod axioms for a homology theory
Homology (mathematics)
01 natural sciences
Mathematics::Algebraic Topology
Floer homology
Rabinowitz–Floer homology
Liouville cobordisms
Mathematics::K-Theory and Homology
0103 physical sciences
FOS: Mathematics
Algebraic Topology (math.AT)
Mathematics - Algebraic Topology
Eilenberg–Steenrod axioms
ddc:510
0101 mathematics
[MATH]Mathematics [math]
Mathematics::Symplectic Geometry
57R17
Axiom
Mathematics
53D40
55N40
57R17
57R90

Differential Geometry
Exact sequence
010102 general mathematics
contact homology
Symplectic Geometry
57R90
Mathematics::Geometric Topology
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
55N40
Differential Geometry (math.DG)
Algebraic Topology
Mathematics - Symplectic Geometry
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symplectic homology
[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]
Symplectic Geometry (math.SG)
010307 mathematical physics
Geometry and Topology
Symplectic geometry
Zdroj: Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2018, 18 (4), pp.1953-2130. ⟨10.2140/agt.2018.18.1953⟩
Algebr. Geom. Topol. 18, no. 4 (2018), 1953-2130
ISSN: 1472-2747
1472-2739
DOI: 10.2140/agt.2018.18.1953⟩
Popis: We give a definition of symplectic homology for pairs of filled Liouville cobordisms, and show that it satisfies analogues of the Eilenberg-Steenrod axioms except for the dimension axiom. The resulting long exact sequence of a pair generalizes various earlier long exact sequences such as the handle attaching sequence, the Legendrian duality sequence, and the exact sequence relating symplectic homology and Rabinowitz Floer homology. New consequences of this framework include a Mayer-Vietoris exact sequence for symplectic homology, invariance of Rabinowitz Floer homology under subcritical handle attachment, and a new product on Rabinowitz Floer homology unifying the pair-of-pants product on symplectic homology with a secondary coproduct on positive symplectic homology. In the appendix, joint with Peter Albers, we discuss obstructions to the existence of certain Liouville cobordisms.
Comment: v3: corrected Lemma 7.11. Various other minor modifications and reformatting. Final version to be published in Algebraic and Geometric Topology
Databáze: OpenAIRE