Image Similarity Metrics Suitable for Infrared Video Stabilization during Active Wildfire Monitoring: A Comparative Analysis
Autor: | Steven Verstockt, Oriol Rios, Christian Mata, Dan Jimenez, Eulàlia Planas, Elsa Pastor, LLoyd Queen, Mario M. Valero |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. CERTEC - Centre d'Estudis del Risc Tecnològic |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Teledetecció
Computer science 0211 other engineering and technologies 02 engineering and technology Aerial video Image similarity video stabilization ENERGY remote sensing sensitivity analysis Incendis Computer vision SATELLITE Image registration MAXIMIZATION image similarity 04 agricultural and veterinary sciences Mutual information Remote sensing Metric (mathematics) REGISTRATION SENSITIVITY Sensitivity analysis Normalization (statistics) Technology and Engineering AIRBORNE Science Infrared imagery FIRE RADIATIVE REMOTE-SENSING TECHNIQUES Enginyeria química [Àrees temàtiques de la UPC] Similarity (network science) Motion estimation OPTIMIZATION 021101 geological & geomatics engineering 040101 forestry Video stabilization business.industry NORMALIZED MUTUAL INFORMATION PERFORMANCE infrared imagery Image stabilization image registration 0401 agriculture forestry and fisheries General Earth and Planetary Sciences Artificial intelligence Wildland fire business wildland fire |
Zdroj: | Remote Sensing, Vol 12, Iss 3, p 540 (2020) Remote Sensing Volume 12 Issue 3 Pages: 540 REMOTE SENSING r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu Universidad de las Islas Baleares UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 2072-4292 |
Popis: | Aerial Thermal Infrared (TIR) imagery has demonstrated tremendous potential to monitor active forest fires and acquire detailed information about fire behavior. However, aerial video is usually unstable and requires inter-frame registration before further processing. Measurement of image misalignment is an essential operation for video stabilization. Misalignment can usually be estimated through image similarity, although image similarity metrics are also sensitive to other factors such as changes in the scene and lighting conditions. Therefore, this article presents a thorough analysis of image similarity measurement techniques useful for inter-frame registration in wildfire thermal video. Image similarity metrics most commonly and successfully employed in other fields were surveyed, adapted, benchmarked and compared. We investigated their response to different camera movement components as well as recording frequency and natural variations in fire, background and ambient conditions. The study was conducted in real video from six fire experimental scenarios, ranging from laboratory tests to large-scale controlled burns. Both Global and Local Sensitivity Analyses (GSA and LSA, respectively) were performed using state-of-the-art techniques. Based on the obtained results, two different similarity metrics are proposed to satisfy two different needs. A normalized version of Mutual Information is recommended as cost function during registration, whereas 2D correlation performed the best as quality control metric after registration. These results provide a sound basis for image alignment measurement and open the door to further developments in image registration, motion estimation and video stabilization for aerial monitoring of active wildland fires. |
Databáze: | OpenAIRE |
Externí odkaz: |