Probing broad timescale and heterogeneous conformational dynamics in the catalytic core of the Arf-GAP ASAP1 via methyl adiabatic relaxation dispersion
Autor: | R. Andrew Byrd, Yue Zhang, Yifei Li, Fa An Chao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Time Factors
Protein Conformation 010402 general chemistry 01 natural sciences Biochemistry Catalysis Article Colloid and Surface Chemistry Dispersion (optics) Side chain Humans Adiabatic process Nuclear Magnetic Resonance Biomolecular Adaptor Proteins Signal Transducing Chemistry Dynamics (mechanics) Relaxation (NMR) General Chemistry 0104 chemical sciences Magnetic field Heteronuclear molecule Chemical physics Biocatalysis Quantum Theory Thermodynamics Macromolecule |
Zdroj: | J Am Chem Soc |
Popis: | Methyl-TROSY is one of the most powerful NMR spectroscopic tools for studying structures and conformational dynamics of large protein complexes in solution. In studying conformational dynamics, side chains usually display heterogeneous dynamics, including collective and local motions, that can be difficult to detect and analyze by conventional relaxation dispersion (RD) approaches. The combination of NH-based heteronuclear adiabatic relaxation dispersion (HARD) experiments and a geometric approximation (geoHARD) has been shown to have several advantages over conventional RD in revealing conformational dynamics over a broad time scale. Here, we demonstrate a new technique that has been developed to detect both heterogeneous and wide time scale conformational dynamics in the hydrophobic interior of large macromolecules utilizing methyl-geoHARD. It is shown that methyl-geoHARD will be feasible at ultrahigh magnetic fields (>1 GHz), when this technology becomes available. For the ZA domain of Arf-GAP ASAP1, with a global correlational time of 24 ns at 15 °C, a wide range of conformational dynamics (exhibiting chemical exchange rates (kex) between 102 and 105 s-1) are observed in the methyl groups of isoleucine, leucine, and valine. The dynamics include collective and independent local motions. Furthermore, portions of the collective motions have been confirmed by single-quantum Carr-Purcell-Meiboom-Gill (SQ-CPMG) RD experiments; however, motions outside of the detectable CPMG window (400-8000 s-1) cannot be accurately determined by SQ-CPMG experiments. The methyl-geoHARD experiment allows the dissection of heterogeneous conformational dynamics and pinpoints important motions that, potentially, can be correlated with important biological functions and recognition. |
Databáze: | OpenAIRE |
Externí odkaz: |