Seismic multiple removal with a Primal-Dual proximal algorithm

Autor: Jean-Christophe Pesquet, Caroline Chaux, Mai Quyen Pham, Laurent Duval
Přispěvatelé: Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), IFP Energies nouvelles (IFPEN), Laboratoire d'Analyse, Topologie, Probabilités (LATP), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Pham, Mai Quyen, Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Proc. ICASSP
ICASSP
ICASSP, May 2013, Vancouver, Canada. 5 pp
Popis: International audience; Both random and structured perturbations affect seismic data. Their removal, to unveil meaningful geophysical information, requires additional priors. Seismic multiples are one form of structured perturbations related to wave-field bouncing. In this paper, we model these undesired signals through a time-varying filtering process accounting for inaccuracies in amplitude, time-shift and average frequency of available templates. We recast the problem of jointly estimating the filters and the signal of interest (primary) in a new convex variational formulation, allowing the incorporation of knowledge about the noise statistics. By making some physically plausible assumptions about the slow time variations of the filters, and by adopting a potential promoting the sparsity of the primary in a wavelet frame, we design a primal-dual algorithm which yields good performance in the provided simulation examples.
Databáze: OpenAIRE