System combination for machine translation for spoken and written language

Autor: Daniel Déchelotte, Hermann Ney, Evgeny Matusov, Holger Schwenk, Salim Roukos, Nicola Bertoldi, Gregor Leusch, José B. Mariño, M. Kolss, Young-Suk Lee, Marcello Federico, M. Paulik, Rafael E. Banchs
Přispěvatelé: Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla, meignier, sylvain, Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Natural-language
Acoustics and Ultrasonics
Machine translation
Computer science
Speech recognition
02 engineering and technology
computer.software_genre
Speech-processing
Machine translation software usability
[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL]
Example-based machine translation
Rule-based machine translation
Speech translation
Traducció automàtica
0202 electrical engineering
electronic engineering
information engineering

Electrical and Electronic Engineering
Language translation
ComputingMilieux_MISCELLANEOUS
business.industry
020206 networking & telecommunications
Transfer-based machine translation
[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL]
Computer-assisted translation
Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic [Àrees temàtiques de la UPC]
020201 artificial intelligence & image processing
Artificial intelligence
Machine-translation
business
computer
Machine translating
Natural language processing
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
IEEE Transactions on Audio, Speech and Language Processing
IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2007, 16 (7), pp.1222--1237
ISSN: 1558-7916
Popis: This paper describes a recently developed method for computing a consensus translation from the outputs of multiple machine translation (MT) systems. A possibly new translation hypothesis can be produced as a result of this system combination algorithm. The consensus translation is computed by creating a confusion network and performing weighted majority voting, similarly to the well-established ROVER approach of (Fiscus 1997) for combining speech recognition hypotheses. To create the confusion network, pairwise word alignments of the original machine translation hypotheses are learned by using an enhanced statistical alignment algorithm that explicitly models word reordering. This is the first known application of this algorithm in the context of system combination. The context of a whole document of translations rather than a single sentence is taken into account to improve the alignment quality. The proposed alignment and voting approach was evaluated on several machine translation tasks, including a large vocabulary task. The method was also tested in the framework of multi- source and speech translation. Significant improvements in translation quality were achieved on all tasks. Here, we report experimental results for combining MT systems participating in the TC-STAR (speech translation) Project.
Databáze: OpenAIRE