On the edge-reconstruction number of a tree

Autor: Asciak, K., Lauri, J., Wendy Myrvold, Pannone, V.
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Scopus-Elsevier
Popis: The edge-reconstruction number ern$(G)$ of a graph $G$ is equal to the minimum number of edge-deleted subgraphs $G-e$ of $G$ which are sufficient to determine $G$ up to isomorphsim. Building upon the work of Molina and using results from computer searches by Rivshin and more recent ones which we carried out, we show that, apart from three known exceptions, all bicentroidal trees have edge-reconstruction number equal to 2. We also exhibit the known trees having edge-reconstruction number equal to 3 and we conjecture that the three infinite families of unicentroidal trees which we have found to have edge-reconstruction number equal to 3 are the only ones.
Comment: 23 pages, 15 figures
Databáze: OpenAIRE