A comparison of methods to relate grass reflectance to soil metal contamination

Autor: Rob S. E. W. Leuven, Piet H. Nienhuis, Lutgarde M. C. Buydens, Lammert Kooistra, Ron Wehrens
Rok vydání: 2003
Předmět:
Zdroj: International Journal of Remote Sensing, 24, 24, pp. 4995-5010
International Journal of Remote Sensing, 24(24), 4995-5010
International Journal of Remote Sensing, 24, 4995-5010
International Journal of Remote Sensing 24 (2003) 24
ISSN: 1366-5901
0143-1161
DOI: 10.1080/143116031000080769
Popis: Grass-dominated vegetation covers large areas of the Dutch river floodplains. Remotely sensed data on the conditions under which this vegetation grows may yield information about the degree of soil contamination. This paper explores the relationship between grassland canopy reflectance and zinc (Zn) contamination in the soil under semi-field conditions. A field radiometer was used to record reflectance spectra of perennial ryegrass (Lolium perenne) in an experimental field with Zn concentrations in the soil ranging from 32 to 1800 mg kg-1. Several spectral vegetation indices (VIs) and a multivariate approach using partial least squares (PLS) regression were investigated to evaluate their potential use in estimating Zn contamination levels. Compared to the best PLS model (RMSEP=181.4 mg kg-1), the narrow band vegetation index MSAVI2mm performed better (RMSEP=162.9 mg kg-1). Both MSAVI2mm and PLS gave a high user accuracy for the strongly contaminated soil class (100% and 91%, respectively), while the total accuracy was satisfactory (60% and 55%, respectively). Results from this feasibility study indicate the potential of using remote sensing techniques for the classification of contaminated areas in river floodplains. But as the results from this study may be both resolution- and location-dependent, research on field and image scale is now required to test the established relations and to assess their susceptibility to seasonal influences, species heterogeneity, and increased levels of spectral noise.
Databáze: OpenAIRE