Popis: |
Coronavirus triggers several respirational infections such as sneezing, coughing, and pneumonia, which transmit humans to humans through airborne droplets. According to the guidelines of the World Health Organization, the spread of COVID-19 can be mitigated by avoiding public interactions in proximity and following standard operating procedures (SOPs) including wearing a face mask and maintaining social distancing in schools, shopping malls, and crowded areas. However, enforcing the adaptation of these SOPs on a larger scale is still a challenging task. With the emergence of deep learning-based visual object detection networks, numerous methods have been proposed to perform face mask detection on public spots. However, these methods require a huge amount of data to ensure robustness in real-time applications. Also, to the best of our knowledge, there is no standard outdoor surveillance-based dataset available to ensure the efficacy of face mask detection and social distancing methods in public spots. To this end, we present a large-scale dataset comprising of 10,000 outdoor images categorized into a binary class labeling i.e., face mask, and non-face masked people to accelerate the development of automated face mask detection and social distance measurement on public spots. Alongside, we also present an end-to-end pipeline to perform real-time face mask detection and social distance measurement in an outdoor environment. Initially, existing state-of-the-art single and multi-stage object detection networks are fine-tuned on the proposed dataset to evaluate their performance in terms of accuracy and inference time. Based on better performance, YOLO-v3 architecture is further optimized by tuning its feature extraction and region proposal generation layers to improve the performance in real-time applications. Our results indicate that the presented pipeline performed better than the baseline version, showing an improvement of 5.3% in terms of accuracy. |