Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2
Autor: | Franz Poeschel, Juncheng E, William F. Godoy, Norbert Podhorszki, Scott Klasky, Greg Eisenhauer, Philip E. Davis, Lipeng Wan, Ana Gainaru, Junmin Gu, Fabian Koller, René Widera, Michael Bussmann, Axel Huebl |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Smoky Mountains Computational Sciences & Engineering Conference (SMC2021), 18.-20.10.2021, Oak Ridge, USACommunications in Computer and Information Science, Volume 1512 CCIS, 99-118 Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation ISBN: 9783030964979 |
Popis: | This paper aims to create a transition path from file-based IO to streaming-based workflows for scientific applications in an HPC environment. By using the openPMP-api, traditional workflows limited by filesystem bottlenecks can be overcome and flexibly extended for in situ analysis. The openPMD-api is a library for the description of scientific data according to the Open Standard for Particle-Mesh Data (openPMD). Its approach towards recent challenges posed by hardware heterogeneity lies in the decoupling of data description in domain sciences, such as plasma physics simulations, from concrete implementations in hardware and IO. The streaming backend is provided by the ADIOS2 framework, developed at Oak Ridge National Laboratory. This paper surveys two openPMD-based loosely-coupled setups to demonstrate flexible applicability and to evaluate performance. In loose coupling, as opposed to tight coupling, two (or more) applications are executed separately, e.g. in individual MPI contexts, yet cooperate by exchanging data. This way, a streaming-based workflow allows for standalone codes instead of tightly-coupled plugins, using a unified streaming-aware API and leveraging high-speed communication infrastructure available in modern compute clusters for massive data exchange. We determine new challenges in resource allocation and in the need of strategies for a flexible data distribution, demonstrating their influence on efficiency and scaling on the Summit compute system. The presented setups show the potential for a more flexible use of compute resources brought by streaming IO as well as the ability to increase throughput by avoiding filesystem bottlenecks. 18 pages, 9 figures, SMC2021, supplementary material at https://zenodo.org/record/4906276 |
Databáze: | OpenAIRE |
Externí odkaz: |