Improved Stroke Care in a Primary Stroke Centre Using AI-Decision Support

Autor: Bence Gunda, Ain Neuhaus, Ildikó Sipos, Rita Stang, Péter Pál Böjti, Tímea Takács, Dániel Bereczki, Balázs Kis, István Szikora, George Harston
Rok vydání: 2021
Předmět:
Zdroj: Cerebrovascular Diseases Extra (2022)
ISSN: 1664-5456
Popis: Background: Patient selection for reperfusion therapies requires significant expertise in neuroimaging. Increasingly, machine learning-based analysis is used for faster and standardized patient selection. However, there is little information on how such software influences real-world patient management. Aims: We evaluated changes in thrombolysis and thrombectomy delivery following implementation of automated analysis at a high volume primary stroke centre. Methods: We retrospectively collected data on consecutive stroke patients admitted to a large university stroke centre from two identical 7-month periods in 2017 and 2018 between which the e-Stroke Suite (Brainomix, Oxford, UK) was implemented to analyse non-contrast CT and CT angiography results. Delivery of stroke care was otherwise unchanged. Patients were transferred to a hub for thrombectomy. We collected the number of patients receiving intravenous thrombolysis and/or thrombectomy, the time to treatment; and outcome at 90 days for thrombectomy. Results: 399 patients from 2017 and 398 from 2018 were included in the study. From 2017 to 2018, thrombolysis rates increased from 11.5% to 18.1% with a similar trend for thrombectomy (2.8–4.8%). There was a trend towards shorter door-to-needle times (44–42 min) and CT-to-groin puncture times (174–145 min). There was a non-significant trend towards improved outcomes with thrombectomy. Qualitatively, physician feedback suggested that e-Stroke Suite increased decision-making confidence and improved patient flow. Conclusions: Use of artificial intelligence decision support in a hyperacute stroke pathway facilitates decision-making and can improve rate and time of reperfusion therapies in a hub-and-spoke system of care.
Databáze: OpenAIRE