Sedimentary phosphorus accumulation and distribution in the continuum of three cascade dams (Creuse River, France)

Autor: Brice Mourier, Marion Rabiet, Malgorzata Grybos, Anne Rapin, Véronique Deluchat
Přispěvatelé: PEIRENE (PEIRENE), Institut Génomique, Environnement, Immunité, Santé, Thérapeutique (GEIST), Université de Limoges (UNILIM)-Université de Limoges (UNILIM), Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Environmental Science and Pollution Research
Environmental Science and Pollution Research, Springer Verlag, 2020, 27 (6), pp.6526-6539. ⟨10.1007/s11356-019-07184-6⟩
ISSN: 0944-1344
1614-7499
Popis: Dam construction leads to both sediment discontinuities and the creation of internal phosphorus (P) loads in reservoirs capable of supporting eutrophication. Today, majority of large rivers are dammed and numerous of these infrastructures are constructed in cascade. However, few studies focus on the cumulative effect of the presence of dam on sediment P mobility and bioavailability in downstream reservoirs and rivers parts or throughout the continuum. The influence of three cascade dams has been studied herein on the sedimentary P distribution in surface bed sediments along a 17-km fluvial continuum of the Creuse River (Massif Central, France). The sediments (17 samples) were analyzed for their physical (grain size, specific surface area) and chemical (pH, contents of P, Fe, Al, Ca, Mn, organic matter (OM), and P fractionation) characteristics. Results indicated an amount of P 3 to 7 times higher in dam sediments (1.59 ± 0.51 mgP/g DW) than in free-flowing river sections (0.27 ± 0.11 mgP/g DW). Unexpectedly, sedimentary TP content did not decrease from the first to the third reservoir. The spatial variations of sediment characteristics between river and reservoirs were correlated with the retention of particles sized under 200 μm within the reservoirs. In reservoir sediment, P was mainly associated with the ascorbate fraction (P associated with the redox-sensitive Fe/Mn precipitates). Inside each dam reservoir, longitudinal variations of the sedimentary P distribution were mainly due to the increase of amorphous Fe precipitate content accumulated in fine sediments toward the dam, as characterized by a low Fe-Asc/P-Asc molar ratio. In the river sections, P distribution (mainly associated with HCl and ascorbate fractions) was not significantly influenced by cascade dams.
Databáze: OpenAIRE