Diagnosing smartphone's abnormal behavior through robust outlier detection methods

Autor: Ali El Attar, Marc Lemercier, Rida Khatoun
Přispěvatelé: Environnement de Réseaux Autonomes (ERA), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: 2013 Global Information Infrastructure Symposium
2013 Global Information Infrastructure Symposium, Oct 2013, Trento, Italy. pp.1-3
GIIS
Popis: Smartphones have become increasingly popular and nowadays with the using of 3G networks, the needs in terms of connectivity in a business environment are substantial. Malicious use of such devices is highly dangerous since users may be victims of such use. In this paper, we present two statistical methods (Minimum Covariance Determinant (MCD) and Minimum Volume Ellipsoid (MVE) used to detect abnormal smartphone's applications. Initial experiments results prove the efficiency and the accuracy of the MVE and MCD in detecting abnormal smartphone's applications.
Databáze: OpenAIRE