Inferring structural variant cancer cell fraction

Autor: Cmero, Marek, Yuan, Ke, Ong, Cheng Soon, Schröder, Jan, Corcoran, Niall M., Papenfuss, Tony, Hovens, Christopher M., Markowetz, Florian, Macintyre, Geoff, Adams, David J., Anur, Pavana, Beroukhim, Rameen, Boutros, Paul C., Bowtell, David D. L., Campbell, Peter J., Cao, Shaolong, Christie, Elizabeth L., Cun, Yupeng, Dawson, Kevin J., Demeulemeester, Jonas, Dentro, Stefan C., Deshwar, Amit G., Donmez, Nilgun, Drews, Ruben M., Eils, Roland, Fan, Yu, Fittall, Matthew W., Garsed, Dale W., Gerstung, Moritz, Getz, Gad, Gonzalez, Santiago, Ha, Gavin, Haase, Kerstin, Imielinski, Marcin, Jerman, Lara, Ji, Yuan, Jolly, Clemency, Kleinheinz, Kortine, Lee, Juhee, Lee-Six, Henry, Leshchiner, Ignaty, Livitz, Dimitri, Malikic, Salem, Martincorena, Iñigo, Mitchell, Thomas J., Morris, Quaid D., Mustonen, Ville, Oesper, Layla, Peifer, Martin, Peto, Myron, Raphael, Benjamin J., Rosebrock, Daniel, Rubanova, Yulia, Sahinalp, S. Cenk, Salcedo, Adriana, Schlesner, Matthias, Schumacher, Steven E., Sengupta, Subhajit, Shi, Ruian, Shin, Seung Jun, Spellman, Paul T., Spiro, Oliver, Stein, Lincoln D., Tarabichi, Maxime, Van Loo, Peter, Vembu, Shankar, Vázquez-García, Ignacio, Wang, Wenyi, Wedge, David C., Wheeler, David A., Wintersinger, Jeffrey A., Yang, Tsun-Po, Yao, Xiaotong, Yu, Kaixian, Zhu, Hongtu
Přispěvatelé: Cmero, Marek [0000-0001-7783-5530], Yuan, Ke [0000-0002-2318-1460], Ong, Cheng Soon [0000-0002-2302-9733], Papenfuss, Tony [0000-0002-1102-8506], Markowetz, Florian [0000-0002-2784-5308], Macintyre, Geoff [0000-0003-3906-467X], Apollo - University of Cambridge Repository, Dentro, SC, Wedge, DC, Yang, T-P, Organismal and Evolutionary Biology Research Programme, Institute of Biotechnology, Bioinformatics, Department of Computer Science
Rok vydání: 2020
Předmět:
Male
0301 basic medicine
Medizin
General Physics and Astronomy
Somatic evolution in cancer
Genome
0302 clinical medicine
Gene Frequency
Neoplasms
129
lcsh:Science
Cancer
Ovarian Neoplasms
Women's cancers Radboud Institute for Molecular Life Sciences [Radboudumc 17]
Multidisciplinary
Manchester Cancer Research Centre
Prostatic Neoplasms/genetics
Liver Neoplasms
1184 Genetics
developmental biology
physiology

Neoplasms/genetics
Women's cancers Radboud Institute for Health Sciences [Radboudumc 17]
Ovarian Cancer
3. Good health
030220 oncology & carcinogenesis
1181 Ecology
evolutionary biology

139
Female
Algorithms
Human
631/67
DNA Copy Number Variations
Science
In silico
Computational biology
Biology
Sensitivity and Specificity
Article
General Biochemistry
Genetics and Molecular Biology

Ovarian Neoplasms/genetics
03 medical and health sciences
Rare Diseases
Machine learning
Genetics
PCAWG Evolution and Heterogeneity Working Group
medicine
Humans
Computer Simulation
ddc:610
Liver Neoplasms/genetics
Allele frequency
Whole genome sequencing
45
Whole Genome Sequencing
Genome
Human

ResearchInstitutes_Networks_Beacons/mcrc
Human Genome
Breakpoint
Computational Biology
Prostatic Neoplasms
PCAWG Consortium
General Chemistry
Computational Biology/methods
631/114/1305
113 Computer and information sciences
Pancreatic Neoplasms/genetics
medicine.disease
Computational biology and bioinformatics
Pancreatic Neoplasms
030104 developmental biology
lcsh:Q
Human genome
631/114
119
Digestive Diseases
Zdroj: Nature communications, vol 11, iss 1
Nature Communications
Nature Communications, Vol 11, Iss 1, Pp 1-15 (2020)
Nature Communications, 11
Nature Communications, 11, 1
Cmero, M, Yuan, K, Ong, C S, Schröder, J, Adams, D J, Anur, P, Beroukhim, R, Boutros, P C, Bowtell, D D L, Campbell, P J, Cao, S, Christie, E L, Cun, Y, Dawson, K J, Demeulemeester, J, Dentro, S C, Deshwar, A G, Donmez, N, Drews, R M, Eils, R, Fan, Y, Fittall, M W, Garsed, D W, Gerstung, M, Getz, G, Gonzalez, S, Ha, G, Haase, K, Imielinski, M, Jerman, L, Ji, Y, Jolly, C, Kleinheinz, K, Lee, J, Lee-Six, H, Leshchiner, I, Livitz, D, Malikic, S, Martincorena, I, Mitchell, T J, Morris, Q D, Mustonen, V, Oesper, L, Peifer, M, Peto, M, Raphael, B J, Rosebrock, D, Rubanova, Y, Sahinalp, S C, Salcedo, A, Schlesner, M, Schumacher, S E, Sengupta, S, Shi, R, Shin, S J, Spellman, P T, Spiro, O, Stein, L D, Tarabichi, M, Van Loo, P, Vembu, S, Vázquez-García, I, Wang, W, Wedge, D C, Wheeler, D A, Wintersinger, J A, Yang, T-P, Yao, X, Yu, K, Zhu, H, Corcoran, N M, Papenfuss, T, Hovens, C M, Markowetz, F & Macintyre, G 2020, ' Inferring structural variant cancer cell fraction ', Nature Communications, vol. 11, no. 1 . https://doi.org/10.1038/s41467-020-14351-8
ISSN: 2041-1723
DOI: 10.1038/s41467-020-14351-8
Popis: We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone’s performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.
The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.
Databáze: OpenAIRE