Frenkel biexcitons in hybrid HJ photophysical aggregates
Autor: | Elizabeth Gutiérrez-Meza, Ravyn Malatesta, Hongmo Li, Ilaria Bargigia, Ajay Ram Srimath Kandada, David A. Valverde-Chávez, Seong-Min Kim, Hao Li, Natalie Stingelin, Sergei Tretiak, Eric R. Bittner, Carlos Silva-Acuña |
---|---|
Rok vydání: | 2021 |
Předmět: |
Condensed Matter::Quantum Gases
Chemical Physics (physics.chem-ph) Condensed Matter - Materials Science Multidisciplinary Condensed Matter::Other Physics SciAdv r-articles Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Condensed Matter::Materials Science Physics - Chemical Physics Physical Sciences Physical and Materials Sciences Research Article |
Zdroj: | Science Advances |
DOI: | 10.48550/arxiv.2101.01821 |
Popis: | Description Bound primary photoexcitation pairs are characterized in semiconductor polymers. Frenkel excitons are unequivocally responsible for the optical properties of organic semiconductors and are predicted to form bound exciton pairs (biexcitons). These are key intermediates, ubiquitous in many photophysical processes such as the exciton bimolecular annihilation dynamics in such systems. Because of their spectral ambiguity, there has been, to date, only scant direct evidence of bound biexcitons. By using nonlinear coherent spectroscopy, we identify here bound biexcitons in a model polymeric semiconductor. We find, unexpectedly, that excitons with interchain vibronic dispersion reveal intrachain biexciton correlations and vice versa. Moreover, using a Frenkel exciton model, we relate the biexciton binding energy to molecular parameters quantified by quantum chemistry, including the magnitude and sign of the exciton-exciton interaction the intersite hopping energies. Therefore, our work promises general insights into the many-body electronic structure in polymeric semiconductors and beyond, e.g., other excitonic systems such as organic semiconductor crystals, molecular aggregates, photosynthetic light-harvesting complexes, or DNA. |
Databáze: | OpenAIRE |
Externí odkaz: |