Superimposed Training Combined Approach for a Reduced Phase of Spectrum Sensing in Cognitive Radio
Autor: | Marco Cardenas-Juarez, Armando Arce, Lizeth Lopez-Lopez, Aldo G. Orozco-Lugo, Ulises Pineda-Rico, Enrique Stevens-Navarro |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
superimposed training
Computer science spectrum sensing Phase (waves) 020206 networking & telecommunications Throughput Context (language use) 02 engineering and technology lcsh:Chemical technology Biochemistry Signal Atomic and Molecular Physics and Optics Synchronization Article Analytical Chemistry Cognitive radio 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing lcsh:TP1-1185 cognitive radio Electrical and Electronic Engineering Instrumentation Throughput (business) Algorithm |
Zdroj: | Sensors, Vol 19, Iss 11, p 2425 (2019) Sensors Volume 19 Issue 11 Sensors (Basel, Switzerland) |
ISSN: | 1424-8220 |
Popis: | This paper presents an approach to exploit the superimposed training (ST)-based primary users&rsquo (PUs) transmissions in the context of spectrum sensing for cognitive radio. In the low signal-to-noise ratio (SNR), the proposed scheme splits the spectrum sensing phase into two sample processing periods, allowing a secondary user (SU) to carry out a training sequence synchronization (with a small probability of error) before the implementation of a robust spectrum sensing algorithm that enhances the detection, based on the deterministic signal components embedded in the ST PU&rsquo s signals along with the unknown data signal. The overall sensing performance is improved using a reasonable number of samples to achieve a high probability of detection, resulting in a reduced spectrum sensing duration. Furthermore, a low computational complexity version of the proposed ST combined approach for a reduced phase (SCAR-Phase) of spectrum sensing is presented, which attains the same detection performance with a smaller number of real operations in the low SNR. In the practical consideration of imperfect training sequence synchronizations, the results show the advantages of exploiting the ST sequence to perform spectrum sensing, thus quantifying the significant improvement in detection performance and the maximum SU&rsquo s achievable throughput. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |