Essential Bacillus subtilis genes

Autor: Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S.C., Bron, S, Bunai, K., Chapuis, J, Christiansen, L.C., Danchin, A., Debarbouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R, Hecker, M., Hosoya, D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., Le Coq, D., Masson, A., Mauel, C., Meima, Roelf, Mellado, R.P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M, Sato, T., Saxild, H.H., Scanlan, E., Schumann, W, Seegers, J.F. M. L., Sekiguchi, J., Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., van Dijl, J.M., Watabe, K., Wipat, A, Yamamoto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U., Ogasawara, N., Ishio, [No Value]
Přispěvatelé: Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology, Translational Immunology Groningen (TRIGR), Graduate School of Information Science, Nara Institute of Science and Technology, Unité de recherche Génétique Microbienne (UGM), Institut National de la Recherche Agronomique (INRA), Università degli Studi di Pavia = University of Pavia (UNIPV), Trinity College Dublin, Biochimie Microbienne, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Saitama University, Rikkyo University [Tokyo], Génétique Moléculaire et Cellulaire (UGMC), École nationale vétérinaire - Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA), Unité Mathématique Informatique et Génome (MIG), University of Sheffield, Newcastle University [Newcastle], University of Groningen, Université de Tsukuba = University of Tsukuba, Institute of Molecular Biology, Génétique des Génomes Bactériens, University of Bayreuth, University of Oxford, Fukuyama University, Partenaires INRAE, Shinshu University, Department of Bioscience, Tokyo University of Agriculture and Technology (TUAT), Institut für Mikrobiologie - Institute for Microbiology, Universität Greifswald - University of Greifswald, Institut de Génétique et de Biologie Microbiennes (IGBM), Université de Lausanne = University of Lausanne (UNIL), National Public Health Institute, Setsunan University, Institut de génétique et microbiologie [Orsay] (IGM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Tokai University School of Medicine, Institut de Biologie Physico-Chimique, Radioisotope Center, The University of Tokyo (UTokyo), University of Pavia, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), École nationale vétérinaire d'Alfort (ENVA)-Institut National de la Recherche Agronomique (INRA), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], University of Oxford [Oxford], Université de Lausanne (UNIL)
Jazyk: angličtina
Rok vydání: 2003
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4678-4683. NATL ACAD SCIENCES
Proceedings of the National Academy of Sciences of the United States of America
Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (8), pp.4678-4683. ⟨10.1073/pnas.0730515100⟩
Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2003, 100 (8), pp.4678-4683. ⟨10.1073/pnas.0730515100⟩
ISSN: 0027-8424
1091-6490
DOI: 10.1073/pnas.0730515100
Popis: To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden-Meyerhof-Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life
To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ≈4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.
Databáze: OpenAIRE