Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state

Autor: Jan-Matthis Lueckmann, Richard Hardstone, Huibert D. Mansvelder, Jan Bím, Klaus Linkenkaer-Hansen, Arthur Ervin Avramiea
Přispěvatelé: Integrative Neurophysiology, Amsterdam Neuroscience - Systems & Network Neuroscience
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Avramiea, A E, Hardstone, R, Lueckmann, J M, Bim, J, Mansvelder, H D & Linkenkaer-Hansen, K 2020, ' Pre-stimulus phase and amplitude regulation of phase-locked responses is maximized in the critical state ', eLife, vol. 9, e53016 . https://doi.org/10.7554/eLife.53016
eLife
eLife, Vol 9 (2020)
eLife, 9:e53016. eLife Sciences Publications
ISSN: 2050-084X
DOI: 10.7554/eLife.53016
Popis: Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.
Databáze: OpenAIRE