Effect of grafting on rheology and structure of a simplified industrial nanocomposite silica/SBR

Autor: Ralf Schweins, Laurent Petitjean, Anne-Caroline Genix, Christophe Degrandcourt, Guilhem P. Baeza, Marc Couty, Julian Oberdisse, Jérémie Gummel
Přispěvatelé: Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Matière Molle, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Physique des Verres, Centre de Technologie de Ladoux, Société Michelin, European Synchrotron Radiation Facility (ESRF), Institut Laue-Langevin (ILL), ILL, CIFRE Michelin
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Macromolecules
Macromolecules, American Chemical Society, 2013, 46 (16), pp.6621-6633. ⟨10.1021/ma401016d⟩
ISSN: 0024-9297
1520-5835
DOI: 10.1021/ma401016d⟩
Popis: International audience; An un-cross-linked SBR-system filled with precipitated silica nanoparticles of radius ≈10 nm by mixing is studied as a function of the fraction of graftable matrix chains (140 kg mol-1) varying from 0% to 100%, for a low (ΦSi = 8.5 vol %) and high (16.7 vol %) silica volume fraction. The linear rheology in shear shows a strong impact of the grafting on the terminal flow regime, and a shift to longer relaxation times with increasing grafting. Simultaneously, the plateau modulus stays approximately constant for the low ΦSi, suggesting a link to the silica content. The microstructure of the silica is characterized by using a combination of transmission electron microscopy and small-angle X-ray scattering data. We apply a quantitative model of interacting aggregates, and determine the average aggregation number (decreasing from 160 to 30 with grafting), aggregate size (50 to 30 nm), and compacity (55% to 35%). While the linear rheology seems to be dominated by the matrix composition, both the mixing rheology and the structure display a saturation with increasing grafting fraction. A closer analysis of this effect indicates that a critical amount of grafting is needed to trigger structural evolution. To summarize, a quantitative study of complex nanocomposites with several features of industrial systems demonstrates that the grafting density can be used as a fine-tuning parameter of rheology and microstructure.
Databáze: OpenAIRE