Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters
Autor: | Hamad ul Hassan, Benjamin Josef Schäfer, Alexander Hartmaier, Petra Sonnweber-Ribic |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Materials science
fatigue crack initiation 02 engineering and technology Slip (materials science) Lath engineering.material lcsh:Technology 01 natural sciences Article Total strain Crystal plasticity fatigue indicator parameters 0103 physical sciences General Materials Science Composite material lcsh:Microscopy lcsh:QC120-168.85 010302 applied physics crystal plasticity lcsh:QH201-278.5 lcsh:T Fatigue testing Dissipation 021001 nanoscience & nanotechnology Microstructure martensitic steel lcsh:TA1-2040 Martensite engineering lcsh:Descriptive and experimental mechanics lcsh:Electrical engineering. Electronics. Nuclear engineering lcsh:Engineering (General). Civil engineering (General) 0210 nano-technology lcsh:TK1-9971 |
Zdroj: | Materials Volume 12 Issue 18 Materials, Vol 12, Iss 18, p 2852 (2019) |
ISSN: | 1996-1944 |
DOI: | 10.3390/ma12182852 |
Popis: | Micromechanical fatigue lifetime predictions, in particular for the high cycle fatigue regime, require an appropriate modelling of mean stress effects in order to account for lifetime reducing positive mean stresses. Focus of this micromechanical study is the comparison of three selected fatigue indicator parameters (FIPs), with respect to their applicability to different total strain ratios. In this work, investigations are performed on the modelling and prediction of the fatigue crack initiation life of the martensitic high-strength steel SAE 4150 for two different total strain ratios. First, multiple martensitic statistical volume elements (SVEs) are generated by multiscale Voronoi tessellations. Micromechanical fatigue simulations are then performed on these SVEs by means of a crystal plasticity model to obtain microstructure dependent fatigue responses. In order to account for the material specific fatigue damage zone, a non-local homogenisation scheme for the FIPs is introduced for lath martensitic microstructures. The numerical results of the different non-local FIPs are compared with experimental fatigue crack initiation results for two different total strain ratios. It is concluded that the multiaxial fatigue criteria proposed by Fatemi-Socie is superior for predicting fatigue crack initiation life to the energy dissipation criteria and the accumulated plastic slip criteria for the investigated total strain ratios. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |