Understanding the 1,3-Dipolar Cycloadditions of Allenes
Autor: | F. Matthias Bickelhaupt, Kevin van Dommelen, Pascal Vermeeren, Trevor A. Hamlin, Song Yu |
---|---|
Přispěvatelé: | Theoretical Chemistry, AIMMS, Chemistry and Pharmaceutical Sciences |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Allene
010402 general chemistry 01 natural sciences Catalysis chemistry.chemical_compound Computational chemistry Reactivity (chemistry) 3-dipolar cycloadditions SDG 7 - Affordable and Clean Energy Physics::Chemical Physics Theoretical Chemistry 1 3-dipolar cycloadditions Cycloaddition Propadiene Full Paper 010405 organic chemistry Chemistry Organic Chemistry Regioselectivity General Chemistry Interaction energy Full Papers 0104 chemical sciences reactivity activation strain model allenes Density functional theory density functional theory calculations Methyl azide |
Zdroj: | Chemistry-A European Journal, 26(50), 11529-11539. Wiley-VCH Verlag Yu, S, Vermeeren, P, van Dommelen, K, Bickelhaupt, F M & Hamlin, T A 2020, ' Understanding the 1,3-Dipolar Cycloadditions of Allenes ', Chemistry-A European Journal, vol. 26, no. 50, pp. 11529-11539 . https://doi.org/10.1002/chem.202000857 Chemistry (Weinheim an Der Bergstrasse, Germany) Chemistry : a European Journal, 26, 50, pp. 11529-11539 Chemistry : a European Journal, 26, 11529-11539 |
ISSN: | 1521-3765 0947-6539 |
DOI: | 10.1002/chem.202000857 |
Popis: | We have quantum chemically studied the reactivity, site‐, and regioselectivity of the 1,3‐dipolar cycloaddition between methyl azide and various allenes, including the archetypal allene propadiene, heteroallenes, and cyclic allenes, by using density functional theory (DFT). The 1,3‐dipolar cycloaddition reactivity of linear (hetero)allenes decreases as the number of heteroatoms in the allene increases, and formation of the 1,5‐adduct is, in all cases, favored over the 1,4‐adduct. Both effects find their origin in the strength of the primary orbital interactions. The cycloaddition reactivity of cyclic allenes was also investigated, and the increased predistortion of allenes, that results upon cyclization, leads to systematically lower activation barriers not due to the expected variations in the strain energy, but instead from the differences in the interaction energy. The geometric predistortion of cyclic allenes enhances the reactivity compared to linear allenes through a unique mechanism that involves a smaller HOMO–LUMO gap, which manifests as more stabilizing orbital interactions. All about allenes! Quantum chemical activation strain analyses reveal that the cycloaddition reactivity of linear allenes decreases as the number of heteroatoms is increased. Moreover, cyclic allenes experience a significant rate enhancement due to the stronger orbital interactions and not to the reduced activation strain, as previously reported. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |