Popis: |
Superhydrophobic coatings with excellent water-repellent properties imply a wide range of application areas. However, improvements are needed in terms of stability and complex processing procedures. In the present study, a superhydrophobic coating on Al sheets was prepared by mixing hexadecyltrimethoxysilane (HDTMS)-modified SiO2 nanoparticles and acid-catalyzed silica sols (HD-SiO2/SiO2 Sol) with polydimethylsiloxane (PDMS) binder. The HD-SiO2 nanoparticles and acid-catalyzed silica sol (SiO2 sol) form a binary graded micro-nanostructure, providing excellent superhydrophobicity (Water Contact Angle = 158.5°, Sliding angle = 0°). Superhydrophobic coatings with excellent water-repellent properties have potential for corrosion prevention. However the commonly used organic resins have poor chemical and mechanical properties. In the present study, the results of outdoor exposure for 30 days, immersion in acid and alkaline solutions for 24 h, grit abrasion, and water impact experiments, respectively, showed that the prepared superhydrophobic coating has good wear resistance. The integrated superhydrophobic coating on the Al sheets exhibited good corrosion inhibition with an efficiency (η) of 98.9%, which is much higher than that of the uncoated sheets. The present study provides a promising approach for producing stable superhydrophobic coatings at a low cost, with the potential to supplant conventional organic resin anti-corrosion coatings. |