Combustion characteristics of pure aluminum and aluminum alloys powders

Autor: Stephane Bernard, Philippe Gillard, Myriam Millogo
Přispěvatelé: Laboratoire pluridisciplinaire de recherche en ingénierie des systèmes, mécanique et énergétique (PRISME), Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Loss Prevention in the Process Industries
Journal of Loss Prevention in the Process Industries, Elsevier, 2020, 68, pp.104270-. ⟨10.1016/j.jlp.2020.104270⟩
ISSN: 0950-4230
Popis: In this work, the explosion and combustion characteristics of aluminum and some aluminum alloys AlSi7Mg0.6, AlSi10Mg, AlMg5 under powders conditioning were studied. The idea was to compare the combustion of pure aluminum and aluminum alloys. The Minimum Ignition Energy (MIE) and explosion severity ΔPmax and (dP/dt)max which represents the dust explosion parameters were measured for all powders using Hartman tube and 20 L spherical bomb. The particles temperature and flame temperature were determined by using IR pyrometer and spectroscopy respectively. The results showed that pure aluminum was more sensitive and severe than its alloys. MIE were: 4 mJ for pure aluminum, 13–23 mJ for aluminum alloys. For severity parameters, the overpressure ΔPmax were around 7–8 bars with maximum rate of pressure rise at 1170 bar/s for aluminum and 5–7 bars with 250–360 bar/s for alloys. However, it has been observed that flame temperatures were similar for aluminum and alloys and vary around 2800–3300 K as a function of concentration.
Databáze: OpenAIRE