Effects of rising sea levels and changed inflows on drainage of the world's busiest artificial waterway for seagoing ships

Autor: Hohenrainer, Jochen, Ebner von Eschenbach, Anna-Dorothea, Krahe, Peter
Jazyk: angličtina
Rok vydání: 2023
Zdroj: XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
Popis: The Kiel Canal located in the northern part of Germany is the busiest artificial waterway in the world navigable by seagoing ships. With a length of approx. 100 km, the canal directly connects the North Sea with the Baltic Sea, forming a shortcut to the up to 650 km longer sea route around Denmark. Runoff from a catchment area of around 1,530 km², which is partly below sea level and is drained with the help of pumping stations, enters the canal. For shipping, it is important that the canal water level remains as constant as possible at about the mean sea level. The water level is regulated by dewatering through sluice structures into the North Sea and the Baltic Sea provided that outer water levels are sufficiently low. The drainage is only possible for a few hours a day due to the varying (e.g. tide-influenced) water levels of the bordering Seas. High sea levels and strong catchment precipitation have a negative impact on canal drainage, as they reduce the available time windows and drainage capacities. The resulting rise in the water level in the canal affects shipping, which in the worst case has to be suspended completely.By coupling a conceptual hydrological model with a simple water management model, we investigate the effect of rising sea levels and changing inflows on canal drainage in different (climate change) scenarios, especially with respect to the frequency of occurrence of water levels critical for shipping. In addition, we examine possible adaptation options.
The 28th IUGG General Assembly (IUGG2023) (Berlin 2023)
Databáze: OpenAIRE