Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data

Autor: Irene Meta, Fernando M. Cucchietti, Patricio Reyes, Feliu Serra-Buriel, Eduardo Graells-Garrido
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa, Barcelona Supercomputing Center
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Computer science
media_common.quotation_subject
Population
0211 other engineering and technologies
02 engineering and technology
Social group
Computer Science - Computers and Society
020204 information systems
Computers and Society (cs.CY)
11. Sustainability
0202 electrical engineering
electronic engineering
information engineering

Floating population
Regional science
education
Subdivision
media_common
Urban mobility
Social and Information Networks (cs.SI)
education.field_of_study
Mobile computing
business.industry
Sustainable urban development
1. No poverty
Spatial analysis
Mobile phone data
021107 urban & regional planning
Computer Science - Social and Information Networks
World population
Informàtica mòbil
Mobile phone
Sustainability
Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Comunicacions mòbils [Àrees temàtiques de la UPC]
Desenvolupament urbà sostenible
business
Diversity (politics)
Zdroj: Companion Proceedings of the Web Conference 2020
WWW (Companion Volume)
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.1145/3366424.3384370
Popis: Urban population grows constantly. By 2050 two thirds of the world population will reside in urban areas. This growth is faster and more complex than the ability of cities to measure and plan for their sustainability. To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions: areas with over- and under-representation of specific population groups, named hot and cold spots respectively. Using aggregated mobile phone data, we apply this methodology to the city of Barcelona to assess the mobility of three groups of people: women, elders, and tourists. We find that, within the three groups, cold spots have a lower diversity of amenities and services than hot spots. Also, cold spots of women and tourists tend to have lower population income. These insights apply to the floating population of Barcelona, thus augmenting the scope of how inclusiveness can be analyzed in the city.
10 pages, 10 figures. To be presented at the Data Science for Social Good workshop at The Web Conference 2020
Databáze: OpenAIRE