Popis: |
The two-dimensional (2-D) framework, [Cu(BTDAT)(MeOH)] {BTDAT = bis-[1,2,5]-thiadiazolo-tetracyanoquinodimethane}, possesses remarkable multi-step redox properties, with electrochemical studies revealing six quasi-stable redox states in the solid state. In situ electron paramagnetic resonance and visible-near infrared spectroelectrochemistry elucidated the mechanism for these multi-step redox processes, as well as the optical and electrochromic behavior of the BTDAT ligand and framework. In studying the structural, spectroscopic, and electronic properties of [Cu(BTDAT)(MeOH)], the as-synthesized framework was found to exist in a mixed-valence state with thermally-activated semiconducting behavior. In addition to pressed pellet conductivity measurements, single-crystal conductivity measurements using a pre-patterned polydimethylsiloxane layer on a silicon substrate provide important insights into the anisotropic conduction pathways. As an avenue to further understand the electronic state of [Cu(BTDAT)(MeOH)], computational band structure calculations predicted delocalized electronic transport in the framework. On the balance of probabilities, we propose that [Cu(BTDAT)(MeOH)] is a Mott insulator (i.e., electron correlations cause a metal-insulator transition). This implies that the conductivity is incoherent. However, we are unable to distinguish between activated transport due to Coulombically bound electron-hole pairs and a hopping mechanism. The combined electrochemical, electronic, and optical properties of [Cu(BTDAT)(MeOH)] shine a new light on the experimental and theoretical challenges for electroactive framework materials, which are implicated as the basis of advanced optoelectronic and electrochromic devices. |