Tunability of the CO adsorption energy on a Ni/Cu surface: Site change and coverage effects

Autor: Paolo Lacovig, Michele Rizzi, Maria Peressi, Sara Furlan, Alfonso Baldereschi, Cristina Africh, Giovanni Comelli, Carlo Dri, Xiangmei Duan, Angelo Peronio, Enrico Monachino, Erik Vesselli
Přispěvatelé: Vesselli, Erik, Rizzi, Michele, Furlan, Sara, Duan, Xiangmei, Monachino, Enrico, Peronio, Angelo, Africh, Cristina, Lacovig, Paolo, Baldereschi, Alfonso, Comelli, Giovanni, Peressi, Maria
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: The Journal of chemical physics 146 (2017). doi:10.1063/1.4985657
info:cnr-pdr/source/autori:Vesselli E.; Rizzi M.; Furlan S.; Duan X.; Monachino E.; Dri C.; Peronio A.; Africh C.; Lacovig P.; Baldereschi A.; Comelli G.; Peressi M./titolo:Tunability of the CO adsorption energy on a Ni%2FCu surface: Site change and coverage effects/doi:10.1063%2F1.4985657/rivista:The Journal of chemical physics/anno:2017/pagina_da:/pagina_a:/intervallo_pagine:/volume:146
DOI: 10.1063/1.4985657
Popis: The adsorption energy of carbon monoxide on Ni ad-islands and ultra-thin films grown on the Cu(110) surface can be finely tuned via a complex interplay among diffusion, site change mechanisms, and coverage effects. The observed features of CO desorption can be explained in terms of migration of CO molecules from Cu to Ni islands, competition between bridge and on-top adsorption sites, and repulsive lateral adsorbate-adsorbate interactions. While the CO adsorption energy on clean Cu(110) is of the order of 0.5 eV, Ni-alloying allows for its controlled, continuous tunability in the 0.98-1.15 eV range with Ni coverage. Since CO is a fundamental reactant and intermediate in many heterogeneous catalytic (electro)-conversion reactions, insight into these aspects with atomic level detail provides useful information to potentially drive applicative developments. The tunability range of the CO adsorption energy that we measure is compatible with the already observed tuning of conversion rates by Ni doping of Cu single crystal catalysts for methanol synthesis from a CO2, CO, and H2 stream under ambient pressure conditions.
Databáze: OpenAIRE