On a certain generalization of triangle singularities
Autor: | Kenji Hashimoto, Hwayoung Lee, Kazushi Ueda |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Generalization General Mathematics Mathematics - Rings and Algebras Algebraic geometry Integer triangle Algebra Mathematics - Algebraic Geometry Number theory Hypersurface Rings and Algebras (math.RA) FOS: Mathematics Schwarz triangle Gravitational singularity Triangle group Algebraic Geometry (math.AG) 14J17 13A02 Mathematics |
Zdroj: | manuscripta mathematica. 153:35-51 |
ISSN: | 1432-1785 0025-2611 |
DOI: | 10.1007/s00229-016-0876-5 |
Popis: | Triangle singularities are Fuchsian singularities associated with von Dyck groups, which are index two subgroups of Schwarz triangle groups. Hypersurface triangle singularities are classified by Dolgachev, and give 14 exceptional unimodal singularities classified by Arnold. We introduce a generalization of triangle singularities to higher dimensions, show that there are only finitely many hypersurface singularities of this type in each dimension, and give a complete list in dimension 3. Comment: 17 pages |
Databáze: | OpenAIRE |
Externí odkaz: |