Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR)

Autor: Germán Rivas, Stéphane Aymerich, Carlos Alfonso, Thierry Doan, Álvaro Ortega, Silvia Zorrilla, Denis Chaix, Catherine A. Royer, Emmanuel Margeat, Nathalie Declerck
Přispěvatelé: Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Microbiologie et Génétique Moléculaire (MGM), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC)
Jazyk: angličtina
Rok vydání: 2007
Předmět:
Models
Molecular

Conformational change
Operon
Fructosediphosphate
Repressor
MESH: Trypsin
Plasma protein binding
Biology
Calorimetry
010402 general chemistry
Crystallography
X-Ray

Ligands
01 natural sciences
Biochemistry
structure protéique
03 medical and health sciences
MESH: Protein Structure
Tertiary

Protein structure
Fructosediphosphates
MESH: Ligands
MESH: Protein Binding
Denaturation (biochemistry)
Trypsin
MESH: Fructosediphosphates
Binding site
MESH: Calorimetry
030304 developmental biology
0303 health sciences
Binding Sites
[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular biology

MESH: Bacillus subtilis
MESH: Crystallography
X-Ray

0104 chemical sciences
3. Good health
Protein Structure
Tertiary

Repressor Proteins
MESH: Binding Sites
MESH: Dimerization
MESH: Repressor Proteins
Crystallographie
cggR
Protein quaternary structure
Dimerization
MESH: Models
Molecular

Protein Binding
Bacillus subtilis
Zdroj: Biochemistry
Biochemistry, American Chemical Society, 2007, 46 (51), pp.14996-5008. ⟨10.1021/bi701805e⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 4996-1500
0006-2960
1520-4995
DOI: 10.1021/bi701805e⟩
Popis: 13 páginas, 9 figuras, 3 tablas -- PAGS nros. 14996-15008
CggR is the transcriptional repressor of the gapA operon encoding central glycolytic enzymes in Bacillus subtilis. Recently, a detailed mechanistic characterization of gapA induction revealed that the binding of fructose-1,6-bisphosphate (FBP) to a low affinity site on CggR (Kd > 100 μM) is responsible for repressor release from the DNA. In addition, this prior work demonstrated that FBP binds to a second high affinity site on the repressor, causing a conformational change in the CggR/DNA complexes, but with no consequence on CggR affinity for its operator DNA. In the present study we have thoroughly analyzed the structural and thermodynamic consequences of FBP binding to CggR. Results of fluorescence anisotropy titrations, calorimetry and limited proteolysis confirm the existence in CggR of a high affinity site for FBP, with a Kd of around 6 μM. Using analytical size-exclusion chromatography, ultracentrifugation as well as fluorescence correlation spectroscopy (FCS) and pressure perturbation, we show that FBP binding at this site reduces the size of the CggR oligomers and induces conformational changes that stabilize the dimer against denaturation. Hence, FBP has a dual role on CggR structure and regulatory function. In addition to acting as an inducer of transcription at the low affinity site, FBP bound to the high affinity site acts as a structural cofactor for the repressor, with profound effects on its quaternary structure as well as on its conformational dynamics and stability. This high affinity FBP site apparently evolved from the sugar substrate binding site of homologous enzymes
Databáze: OpenAIRE