Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR)
Autor: | Germán Rivas, Stéphane Aymerich, Carlos Alfonso, Thierry Doan, Álvaro Ortega, Silvia Zorrilla, Denis Chaix, Catherine A. Royer, Emmanuel Margeat, Nathalie Declerck |
---|---|
Přispěvatelé: | Centre de Biochimie Structurale [Montpellier] (CBS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM), Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Microbiologie et Génétique Moléculaire (MGM), Institut National de la Recherche Agronomique (INRA)-Institut National Agronomique Paris-Grignon (INA P-G)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC) |
Jazyk: | angličtina |
Rok vydání: | 2007 |
Předmět: |
Models
Molecular Conformational change Operon Fructosediphosphate Repressor MESH: Trypsin Plasma protein binding Biology Calorimetry 010402 general chemistry Crystallography X-Ray Ligands 01 natural sciences Biochemistry structure protéique 03 medical and health sciences MESH: Protein Structure Tertiary Protein structure Fructosediphosphates MESH: Ligands MESH: Protein Binding Denaturation (biochemistry) Trypsin MESH: Fructosediphosphates Binding site MESH: Calorimetry 030304 developmental biology 0303 health sciences Binding Sites [SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biology MESH: Bacillus subtilis MESH: Crystallography X-Ray 0104 chemical sciences 3. Good health Protein Structure Tertiary Repressor Proteins MESH: Binding Sites MESH: Dimerization MESH: Repressor Proteins Crystallographie cggR Protein quaternary structure Dimerization MESH: Models Molecular Protein Binding Bacillus subtilis |
Zdroj: | Biochemistry Biochemistry, American Chemical Society, 2007, 46 (51), pp.14996-5008. ⟨10.1021/bi701805e⟩ Digital.CSIC. Repositorio Institucional del CSIC instname |
ISSN: | 4996-1500 0006-2960 1520-4995 |
DOI: | 10.1021/bi701805e⟩ |
Popis: | 13 páginas, 9 figuras, 3 tablas -- PAGS nros. 14996-15008 CggR is the transcriptional repressor of the gapA operon encoding central glycolytic enzymes in Bacillus subtilis. Recently, a detailed mechanistic characterization of gapA induction revealed that the binding of fructose-1,6-bisphosphate (FBP) to a low affinity site on CggR (Kd > 100 μM) is responsible for repressor release from the DNA. In addition, this prior work demonstrated that FBP binds to a second high affinity site on the repressor, causing a conformational change in the CggR/DNA complexes, but with no consequence on CggR affinity for its operator DNA. In the present study we have thoroughly analyzed the structural and thermodynamic consequences of FBP binding to CggR. Results of fluorescence anisotropy titrations, calorimetry and limited proteolysis confirm the existence in CggR of a high affinity site for FBP, with a Kd of around 6 μM. Using analytical size-exclusion chromatography, ultracentrifugation as well as fluorescence correlation spectroscopy (FCS) and pressure perturbation, we show that FBP binding at this site reduces the size of the CggR oligomers and induces conformational changes that stabilize the dimer against denaturation. Hence, FBP has a dual role on CggR structure and regulatory function. In addition to acting as an inducer of transcription at the low affinity site, FBP bound to the high affinity site acts as a structural cofactor for the repressor, with profound effects on its quaternary structure as well as on its conformational dynamics and stability. This high affinity FBP site apparently evolved from the sugar substrate binding site of homologous enzymes |
Databáze: | OpenAIRE |
Externí odkaz: |