Using drug knowledgebase information to distinguish between look-alike-sound-alike drugs

Autor: Alejandra Salazar, Bruce L. Lambert, Gordon D. Schiff, Mary G. Amato, Christine M. Cheng, Lynn A. Volk
Rok vydání: 2018
Předmět:
Zdroj: J Am Med Inform Assoc
ISSN: 1527-974X
Popis: Objective To extract drug indications from a commercial drug knowledgebase and determine to what extent drug indications can discriminate between look-alike-sound-alike (LASA) drugs. Methods We extracted drug indications disease concepts from the MedKnowledge Indications module from First Databank Inc. (South San Francisco, CA) and associated them with drugs on the Institute for Safe Medication Practices (ISMP) list of commonly confused drug names. We used high-level concepts (rather than granular concepts) to represent the general indications for each drug. Two pharmacists reviewed each drug’s association with its high-level indications concepts for accuracy and clinical relevance. We compared the high-level indications for each commonly confused drug pair and categorized each pair as having a complete overlap, partial overlap or no overlap in high-level indications. Results Of 278 LASA drug pairs, 165 (59%) had no overlap and 58 (21%) had partial overlap in high-level indications. Fifty-five pairs (20%) had complete overlap in high-level indications; nearly half of these were comprised of drugs with the same active ingredient and route of administration (e.g., Adderall, Adderall XR). Conclusions Drug indications data from a drug knowledgebase can discriminate between many LASA drugs.
Databáze: OpenAIRE