Metallurgical factors affecting fracture toughness of aluminum alloys

Autor: G. T. Hahn, A. R. Rosenfield
Rok vydání: 1975
Předmět:
Zdroj: Metallurgical Transactions A. 6:653-668
ISSN: 2379-0180
0360-2133
DOI: 10.1007/bf02672285
Popis: Crack extension in commercial aluminum alloys proceeds by the “ductile” or fibrous mode. The process involves the large, ~1 μm to ~10μm, Fe-, Si-, and Cu-bearing inclusions which break easily, and the growth of voids at the cracked particles. The linking-up of the voids is accomplished by the rupture of the intervening ligaments, and this is affected by the fine, ~0.01μm precipitate particles that strengthen the matrix. The ~0.1μm Cr-, Mn-, and Zr-rich intermediate particles are more resistant to cracking and may enter the process in the linking-up stage. The fracture toughness of aluminum alloys therefore depends on a) the extent of the heavily strained region ahead of the crack tip, which is a function of the yield strength arad modulus, b) the size of the ligaments which is related tof c, the volume fraction of cracked particles, and c) the work of rupturing the ligaments. An approximate analysis predicts KIc varies asf c-1/6, and this is in agreement with measurements on alloys with comparable yield strength levels. Studies in which the aging conditions are altered for the samef cshow that the toughness decreases with increasing yield strength level. This degradation in toughness is related to the localization of plastic deformation. The tendency for localization is illustrated with the help of “plane strain” tension and bend specimens whose behavior is related to the toughness. Measurements of the strain distribution on the microscale show that slip is relatively uniformly distributed in a 7000-type alloy with low inclusion and particle content when the material is in the as-quenched and overaged conditions. In contrast the distribution is highly nonuniform in the peak aged condition where slip is concentrated in widely spaced superbands involving coarse slip bands with large offsets that crack prematurely. The connection between the tendency for slip localization and the fine precipitate particles which strengthen the matrix remains to be established. In overaged alloys grain boundary ruptures occur within the superbands. The amount of intergranular failure increases with grain size and is accompanied by a loss of fracture toughness.
Databáze: OpenAIRE