Popis: |
MEMS tunable capacitors have applications in tunable filters and RF circuits where high tunability and Q-factor are desired. Conventional parallel-plate tunable capacitors have a highly nonlinear capacitance-voltage (C-V) response and limited tunability of up to 50% due to fundamental limitation and structural instability. In this work, we present a novel design idea for a parallel-plate tunable capacitor that increases the tuning ratio and provides a smoother (more linear) response. The design uses two modes of deformation, rigid-body displacement of a curved moving electrode before pull-in and deforming the plate after pull-in, and exploits nonlinear structural stiffness to improve the linearity (and the tunability) of the tunable parallel-plate capacitor. The capacitor structure is designed such that when actuation voltage is applied, first the beams holding the moving electrode deform, and capacitance increase similar to conventional design up to pull-in. After the pull-in, the top electrode (which has a curved geometry) is deformed and further increases the capacitance, as the voltage increases. The design may provide an overall simulated tunability of more than 380%, and also has a more linear C-V response. The design is modeled and simulated using ANSYS coupled-field multiphysics solver and the effect of different design parameters are investigated. The simulation results show much high tunability and better linearity than conventional parallel-plate capacitors. |