Global Dynamics in a Beddington–DeAngelis Prey–Predator Model with Density Dependent Death Rate of Predator
Autor: | Udai Kumar, Koushik Garain, Partha Sarathi Mandal |
---|---|
Rok vydání: | 2019 |
Předmět: |
Cusp (singularity)
Equilibrium point Applied Mathematics Bifurcation diagram 01 natural sciences Stability (probability) Nonlinear Sciences::Chaotic Dynamics 010101 applied mathematics Transcritical bifurcation 0103 physical sciences Quantitative Biology::Populations and Evolution Applied mathematics Homoclinic bifurcation 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons 010301 acoustics Predator Analysis Bifurcation Mathematics |
Zdroj: | Differential Equations and Dynamical Systems. 29:265-283 |
ISSN: | 0974-6870 0971-3514 |
DOI: | 10.1007/s12591-019-00469-9 |
Popis: | The article aims to investigate a prey–predator model which includes density dependent death rate for predators and Beddington–DeAangelis type functional response. We observe the changes in the existence and stability of the equilibrium points and investigate the complete global dynamics of the model. A two-parametric bifurcation diagram has been described here which shows the effect of density dependent death rate parameter of predator. We have also examined all possible local and global bifurcations that the system could go through, namely transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation, cusp bifurcation, Bogdanov–Takens bifurcation, Bautin bifurcation and homoclinic bifurcation. |
Databáze: | OpenAIRE |
Externí odkaz: |