A Dual Approach to Verify and Train Deep Networks

Autor: Sven Gowal, Pushmeet Kohli, Timothy A. Mann, Robert Stanforth, Krishnamurthy Dvijotham
Rok vydání: 2019
Předmět:
Zdroj: IJCAI
DOI: 10.24963/ijcai.2019/854
Popis: This paper addressed the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (e.g., robustness to bounded norm adversarial perturbations). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime, i.e., it can be stopped at any time and a valid bound on the maximum violation can be obtained. Finally, we highlight how this approach can be used to train models that are amenable to verification.
Databáze: OpenAIRE