Structural and electronic properties of 2D (graphene, hBN)/H-terminated diamond (100) heterostructures
Autor: | A. Glen Birdwell, Mahesh R. Neupane, Bishwajit Debnath, Pankaj B. Shah, Kevin G. Crawford, Tony Ivanov, Dmitry Ruzmetov, James Weil, P. Alex Greaney, Pegah S. Mirabedini |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Materials science Physics and Astronomy (miscellaneous) business.industry Graphene Band gap Diamond Heterojunction Charge (physics) 02 engineering and technology Substrate (electronics) engineering.material 021001 nanoscience & nanotechnology 01 natural sciences law.invention law 0103 physical sciences engineering Optoelectronics Field-effect transistor 0210 nano-technology business Layer (electronics) |
Zdroj: | Applied Physics Letters. 117:121901 |
ISSN: | 1077-3118 0003-6951 |
Popis: | We report a first-principles study of the structural and electronic properties of two-dimensional (2D) layer/hydrogen-terminated diamond (100) heterostructures. Both the 2D layers exhibit weak van-der-Waals (vdW) interactions and develop rippled configurations with the H-diamond (100) substrate to compensate for the induced strain. The adhesion energy of the hexagonal boron nitride (hBN) layer is slightly higher, and it exhibits a higher degree of rippling compared to the graphene layer. A charge transfer analysis reveals a small amount of charge transfer from the H-diamond (100) surface to the 2D layers, and most of the transferred charge was found to be confined within the vdW gap. In the graphene/H-diamond (100) heterostructure, the semi-metallic characteristic of the graphene layer is preserved. On the other hand, the hBN/H-diamond (100) heterostructure shows semiconducting characteristics with an indirect bandgap of 3.55 eV, where the hBN layer forms a Type-II band alignment with the H-diamond (100) surface. The resultant conduction band offset and valence band offset are 0.10 eV and 1.38 eV, respectively. A thin layer of hBN offers a defect-free interface with the H-diamond (100) surface and provides a layer-dependent tunability of electronic properties and band alignment for surface-doped diamond field effect transistors. |
Databáze: | OpenAIRE |
Externí odkaz: |