Zygmund strong foliations in higher dimension
Autor: | Yong Fang, Patrick Foulon, Boris Hasselblatt |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Journal of Modern Dynamics. 4:549-569 |
ISSN: | 1930-532X |
Popis: | For a compact Riemannian manifold M, k ≥ 2 and a uniformly quasiconformal transversely symplecticC k Anosov flow ϕ: R×M → M we de- fine the longitudinal KAM-cocycle and use it to prove a rigidity result: E u ⊕E s is Zygmund-regular, and higher regularity implies vanishing of the longitudi- nal KAM-cocycle, which in turn implies that E u ⊕E s is Lipschitz-continuous. Results proved elsewhere then imply that the flow is smoothly conjugate to an algebraic one. |
Databáze: | OpenAIRE |
Externí odkaz: |