Zygmund strong foliations in higher dimension

Autor: Yong Fang, Patrick Foulon, Boris Hasselblatt
Rok vydání: 2010
Předmět:
Zdroj: Journal of Modern Dynamics. 4:549-569
ISSN: 1930-532X
Popis: For a compact Riemannian manifold M, k ≥ 2 and a uniformly quasiconformal transversely symplecticC k Anosov flow ϕ: R×M → M we de- fine the longitudinal KAM-cocycle and use it to prove a rigidity result: E u ⊕E s is Zygmund-regular, and higher regularity implies vanishing of the longitudi- nal KAM-cocycle, which in turn implies that E u ⊕E s is Lipschitz-continuous. Results proved elsewhere then imply that the flow is smoothly conjugate to an algebraic one.
Databáze: OpenAIRE