On planar compactons with an extended regularity
Autor: | Philip Rosenau, Alon Zilburg |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
Conservation law Nonlinear dispersion Mathematical analysis General Physics and Astronomy Type (model theory) 01 natural sciences 010305 fluids & plasmas Dispersive partial differential equation Nonlinear system Nonlinear Sciences::Exactly Solvable and Integrable Systems Planar 0103 physical sciences Hexagonal lattice 010306 general physics Nonlinear Sciences::Pattern Formation and Solitons |
Zdroj: | Physics Letters A. 381:3558-3567 |
ISSN: | 0375-9601 |
DOI: | 10.1016/j.physleta.2017.09.011 |
Popis: | Using a Lotka–Volterra type system on a hexagonal lattice we derive and study a novel, strongly nonlinear dispersive equation u t = ∂ x ( u + Δ u ) n , n > 1 , the n-Cubic equation, which supports the formation and propagation of planar compactons endowed with extended regularity at their perimeter. Compactons may be uni-modal or, if n is odd, multi-modal as well. Both evolution and interaction of compactons are presented and discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |