High-speed brain-computer communication interface based on code-modulated visual evoked potentials
Autor: | R.K. Grigoryan, Alexander Kaplan, D B Filatov |
---|---|
Rok vydání: | 2019 |
Předmět: |
medicine.diagnostic_test
Computer science Speech recognition 020208 electrical & electronic engineering 02 engineering and technology General Medicine Visual evoked potentials Electroencephalography 03 medical and health sciences 0302 clinical medicine 0202 electrical engineering electronic engineering information engineering Code (cryptography) medicine 030217 neurology & neurosurgery Communication interface Brain–computer interface |
Zdroj: | TARGETED ONCOTHERAPY. :26-31 |
ISSN: | 2542-1204 2500-1094 |
DOI: | 10.24075/brsmu.2019.019 |
Popis: | Brain-computer interface (BCI) technologies are actively used in clinical practice to communicate with patients unable to speak and move. Such interfaces imply identifying potentials evoked by stimuli meaningful to the patient in his/her EEG and interpreting these potentials into inputs for the communication software. The stimuli can take form of highlighted letters on a screen, etc. This study aimed to investigate EEG indicators and assess the command input performance of a promising type of BCI utilizing the so-called code-modulated visual evoked potentials (CVEP) appearing in response to a certain sequence of highlights of the desired letter. The operation of the interface was studied on 15 healthy volunteers. During the experiments, we changed the speed of stimuli demonstration and inverted the order of flashing. It was established that the optimal speed of stimulation significantly depends on individual traits of the person receiving the stimuli, and inversion of their sequence does not affect operation of the interface. The median accuracy of selection of commands was as follows: 1 s stimulation cycle mode — 0.96 and 0.95 (information transfer rate 142 and 141 bit per minute); 2 s stimulation cycle mode — 1; 0.5 s cycle — 0.33. The evoked potentials were most expressed at the Oz site. It was assumed that CVEP-based brain-computer interfaces can be optimized through individualization of the set of stimulation parameters. |
Databáze: | OpenAIRE |
Externí odkaz: |