Using fast-acting temperature-sensitive mutants to study cell division in Caenorhabditis elegans
Autor: | Sriramkumar Sundaramoorthy, Mimi Shirasu-Hiza, Tim Davies, Julien Dumont, Julie C. Canman, Shawn Jordan |
---|---|
Rok vydání: | 2017 |
Předmět: |
0301 basic medicine
Cell division Mutant Biology Temperature-sensitive mutant biology.organism_classification Thermal control Phenotype Cell biology 03 medical and health sciences 030104 developmental biology 0302 clinical medicine Temperature sensitive 030217 neurology & neurosurgery Caenorhabditis elegans Cytokinesis |
DOI: | 10.1016/bs.mcb.2016.05.004 |
Popis: | Fast-acting temperature-sensitive (ts) mutations are powerful conditional tools for studying transient cellular processes such as cytokinesis. Fast-acting ts cytokinesis-defective mutants are functional at the permissive temperature; yet show a fully penetrant loss-of-function cytokinesis failure phenotype when upshifted to the restrictive temperature. Fast-acting ts mutations thus allow functional tunability and rapid and reversible protein inactivation by simply shifting the temperature at precise times throughout cell division. In this chapter, we describe several techniques and discuss various approaches for harnessing the power of fast-acting ts mutants to study cytokinesis in Caenorhabditis elegans using both simple passive heat transfer and more advanced fluidic-based thermal control systems. We also provide detailed protocols for standard dissection, mounting, and imaging of early worm embryos. |
Databáze: | OpenAIRE |
Externí odkaz: |