Gradient estimates of a nonlinear elliptic equation for the V-Laplacian
Autor: | Guangwen Zhao |
---|---|
Rok vydání: | 2019 |
Předmět: |
General Mathematics
010102 general mathematics Mathematical analysis Boundary (topology) Riemannian manifold 01 natural sciences law.invention Nonlinear system Elliptic curve law Bounded function 0103 physical sciences Mathematics::Metric Geometry Mathematics::Differential Geometry 010307 mathematical physics 0101 mathematics Manifold (fluid mechanics) Laplace operator Ricci curvature Mathematics |
Zdroj: | Archiv der Mathematik. 114:457-469 |
ISSN: | 1420-8938 0003-889X |
DOI: | 10.1007/s00013-019-01419-1 |
Popis: | This paper studies gradient estimates for positive solutions of the nonlinear elliptic equation $$\begin{aligned} \Delta _V(u^p)+\lambda u=0,\quad p\ge 1, \end{aligned}$$on a Riemannian manifold (M, g) with k-Bakry–Emery Ricci curvature bounded from below. We consider both the case where M is a compact manifold with or without boundary and the case where M is a complete manifold. |
Databáze: | OpenAIRE |
Externí odkaz: |