The average number of events per time unit and its estimation

Autor: Herbert Vogt
Rok vydání: 1996
Předmět:
Zdroj: Metrika. 44:207-221
ISSN: 1435-926X
0026-1335
DOI: 10.1007/bf02614067
Popis: Let ζ t be the number of events which will be observed in the time interval [0;t] and define % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2% da9maaxababaGaciiBaiaacMgacaGGTbaaleaacaWG0bGaeyOKH4Qa% eyOhIukabeaakiaadweaaaa!3FED! $$A = \mathop {\lim }\limits_{t \to \infty } E$$ as the average number of events per time unit if this limit exists. In the case of i.i.d. waiting-times between the events,E[ζ t ] is the renewal function and it follows from well-known results of renewal theory thatA exists and is equal to 1/τ, if τ>0 is the expectation of the waiting-times. This holds true also when τ = ∞.A may be estimate by ζ t /t or % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac+% caceWGybGbaebaaaa!3850! $$1/\bar X$$ where % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaara% aaaa!36E2! $$\bar X$$ is the mean of the firstn waiting-timesX 1,X 2, ...,X n . Both estimators converage with probability 1 to 1/τ if theX i are i.i.d.; but the expectation of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac+% caceWGybGbaebaaaa!3850! $$1/\bar X$$ may be infinite for alln and also if it is finite, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaac+% caceWGybGbaebaaaa!3850! $$1/\bar X$$ is in general a positively biased estimator ofA. For a stationary renewal process, ζ t /t is unbiased for eacht; if theX i are i.i.d. with densityf(x), then ζ t /t has this property only iff(x) is of the exponential type and only for this type the numbers of events in consecutive time intervals [0,t], [t, 2t], ... are i.i.d. random variables for arbitraryt > 0.
Databáze: OpenAIRE