Applying Ternary Net Weights to the R-Mask Neural Network to Identify Bronchopulmonary Lung Segments
Autor: | N. J. Francis, S. A. Aljasar, Yubin Xu, S. V. Axyonov, N. S. Francis, Muhammad Saqib |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Physics: Conference Series. 1611:012061 |
ISSN: | 1742-6596 1742-6588 |
DOI: | 10.1088/1742-6596/1611/1/012061 |
Popis: | The purpose of this research is to develop an algorithm for detecting bronchopulmonary segments in lung Computer Tomography (CT) images, while reducing computational costs. The algorithm is implemented without the use of a graphics processor (GPU). The main algorithm of the proposed system introduces ternary weights into Mask R-CNN. The ternary hyperbolic tangent function replaces Mask R-CNN’s activation function to reduce overhead costs. This is a convenient and inexpensive system, designed to help radiologists to detect bronchopulmonary lung segmentation with high accuracy. |
Databáze: | OpenAIRE |
Externí odkaz: |