Applying Ternary Net Weights to the R-Mask Neural Network to Identify Bronchopulmonary Lung Segments

Autor: N. J. Francis, S. A. Aljasar, Yubin Xu, S. V. Axyonov, N. S. Francis, Muhammad Saqib
Rok vydání: 2020
Předmět:
Zdroj: Journal of Physics: Conference Series. 1611:012061
ISSN: 1742-6596
1742-6588
DOI: 10.1088/1742-6596/1611/1/012061
Popis: The purpose of this research is to develop an algorithm for detecting bronchopulmonary segments in lung Computer Tomography (CT) images, while reducing computational costs. The algorithm is implemented without the use of a graphics processor (GPU). The main algorithm of the proposed system introduces ternary weights into Mask R-CNN. The ternary hyperbolic tangent function replaces Mask R-CNN’s activation function to reduce overhead costs. This is a convenient and inexpensive system, designed to help radiologists to detect bronchopulmonary lung segmentation with high accuracy.
Databáze: OpenAIRE