FINITE-SIZE SCALING OF THE CORRELATION LENGTH IN ANISOTROPIC SYSTEMS

Autor: Xunan Chen, Houyin Zhang
Rok vydání: 2007
Předmět:
Zdroj: International Journal of Modern Physics B. 21:4212-4218
ISSN: 1793-6578
0217-9792
DOI: 10.1142/s0217979207045426
Popis: The finite-size scaling functions of thermodynamic functions in anisotropic systems have been shown to be dependent on the spatial anisotropy [X.S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004)]. Here we extend this study to the correlation length ξ‖ of the anisotropic O (n) symmetric φ4 model in an Ld−1 × ∞ cylindric geometry with periodic boundary conditions. We calculate the exact finite-size scaling function of correlation length ξ‖ for T ≥ Tc in 2 < d < 4 dimensions and in the limit n → ∞. The finite-size scaling function of ξ‖ is dependent on a normalized symmetric (d − 1) × (d − 1) matrix defined by the anisotropy matrix of anisotropic systems.
Databáze: OpenAIRE