FINITE-SIZE SCALING OF THE CORRELATION LENGTH IN ANISOTROPIC SYSTEMS
Autor: | Xunan Chen, Houyin Zhang |
---|---|
Rok vydání: | 2007 |
Předmět: | |
Zdroj: | International Journal of Modern Physics B. 21:4212-4218 |
ISSN: | 1793-6578 0217-9792 |
DOI: | 10.1142/s0217979207045426 |
Popis: | The finite-size scaling functions of thermodynamic functions in anisotropic systems have been shown to be dependent on the spatial anisotropy [X.S. Chen and V. Dohm, Phys. Rev. E 70, 056136 (2004)]. Here we extend this study to the correlation length ξ‖ of the anisotropic O (n) symmetric φ4 model in an Ld−1 × ∞ cylindric geometry with periodic boundary conditions. We calculate the exact finite-size scaling function of correlation length ξ‖ for T ≥ Tc in 2 < d < 4 dimensions and in the limit n → ∞. The finite-size scaling function of ξ‖ is dependent on a normalized symmetric (d − 1) × (d − 1) matrix defined by the anisotropy matrix of anisotropic systems. |
Databáze: | OpenAIRE |
Externí odkaz: |