Flat Almost Complex Surfaces in the Homogeneous Nearly Kähler $${\varvec{S}}^\mathbf{3}\varvec{\times } {\varvec{S}}^\mathbf{3}$$ S 3 × S 3
Autor: | Luc Vrancken, Bart Dioos, Haizhong Li, Hui Ma |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Results in Mathematics. 73 |
ISSN: | 1420-9012 1422-6383 |
DOI: | 10.1007/s00025-018-0784-y |
Popis: | By employing a nice adapted frame we prove a Bonnet-type existence and uniqueness theorem for almost complex surfaces in the homogeneous nearly Kahler manifold $$S^3\times S^3$$ . The proof uses a local correspondence between almost complex surfaces in $$S^3\times S^3$$ and surfaces in $$\mathbb {R}^3$$ that satisfy the Wente H-surface equation. Furthermore we give a complete classification of flat almost complex surfaces in the homogeneous nearly Kahler $$S^3\times S^3$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |